ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR PREDICTING ALPHA BAND POWER OF EEG DURING MUSLIM PRAYER (SALAT)

Hazem Doufesh* 1
Fatimah Ibrahim 1 2
Noor Azina Ismail 3 4
Wan Azman Wan Ahmad 1 5

1Department of Electronics Engineering, Faculty of Engineering, Al-Quds University, 20002, Jerusalem Palestine, Israel
2Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
3Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Department of Applied Statistics, Faculty of Economics and Administration, University of Malaya, Kuala Lumpur 50603, Malaysia
5Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia

*Corresponding author. Tel: +972-599992370

Accepted: 26 October 2016
Published: 19 December 2016

The features of electroencephalographic (EEG) signals include important information about the function of the brain. One of the most common EEG signal features is alpha wave, which is indicative of relaxation or mental inactivity. Until now, the analysis and the feature extraction procedures of these signals have not been well developed. This study presents a new approach based on an adaptive neuro-fuzzy inference system (ANFIS) for extracting and predicting the alpha power band of EEG signals during Muslim prayer (Salat). Proposed models can acquire information related to the alpha power variations during Salat from other physiological parameters such as heart rate variability (HRV) components, heart rate (HR), and respiration rate (RSP). The models were developed by systematically optimizing the initial ANFIS model parameters. Receiver operating characteristic (ROC) curves were performed to evaluate the performance of the optimized ANFIS models. Overall prediction accuracy of the proposed models were achieved of 94.39%, 92.89%, 93.62%, and 94.31% for the alpha power of electrodes positions at O1, O2, P3, and P4, respectively. These models demonstrated many advantages, including efficiency, accuracy, and simplicity. Thus, ANFIS could be considered as a suitable tool for dealing with complex and nonlinear prediction problems.

Keywords: Adaptive Neuro-Fuzzy inference system; Alpha power band; Electroencephalographic (EEG); Muslim prayer (Salat)

Access to the content you have requested requires one of the following:

Log In

Email:
Password:
[] Remember me

12/25/2016
Purchase Options

Choose from the following options:

- Biomedical Engineering: Applications, Basis and Communications - 28(06); ADAPTIVE NEURO-FUZZY INFERENC SYSTEM FOR PREDICTING ALPHA BAND POWER OF EEG DURING MUSLIM PRAYER (SALAT), Electronic, Individual (unlimited access for USD35.00)

Add to cart

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR PREDICTING ALPHA BAND POWER OF EEG DURING MUSLIM PRAYER (SALAT)

Hazem Doufesh*, Fatimah Ibrahim†, Noor Azina Ismail†, Wan Azman Wan Ahmad*†

The features of electroencephalographic (EEG) signals include important information about the function of the brain. One of the most common EEG signal features is alpha wave, which is indicative of relaxation or mental inactivity. Until now, the analysis and the feature extraction procedures of these signals have not been well developed. This study presents a new approach based on an adaptive neuro-fuzzy inference system (ANFIS) for extracting and predicting the alpha power band of EEG signals during Muslim prayer (Salat). Proposed models can acquire information related to the alpha power variations during Salat from other physiological parameters such as heart rate variability (HRV) components, heart rate (HR), and respiration rate (RR). The models were developed by systematically optimizing the ANFIS model parameters. Receiver operating characteristic (ROC) curves were performed to evaluate the performance of the optimized ANFIS models. Overall prediction accuracy of the proposed models were achieved of 94.39%, 92.89%, 93.62%, and 94.31% for the alpha power of electrodes positions at O1, O2, P3, and P4, respectively. These models demonstrated many advantages, including efficiency, accuracy, and simplicity. Thus, ANFIS could be considered as a suitable tool for dealing with complex and nonlinear prediction problems.

Keywords: Adaptive Neuro-Fuzzy inference system; Alpha power band; Electroencephalographic (EEG); Muslim prayer (Salat)
Our ANFIS paper
3 messages

Hazem Doufesh <hdoufesh@staff.alquds.edu> Sat, Dec 24, 2016 at 10:10 PM
To: fatimah <fatimah@um.edu.my>, NOOR AZINA Ismail <nazina@um.edu.my>, Wan Azman Wan Ahmad <wanazman@ummc.edu.my>, Hazem Doufesh <hdoufesh@staff.alquds.edu>

Dear my profs,

Congratulations, our ANFIS paper has been published online now:

Thank you so much

You’re student

Hazem

Hazem Doufesh, Ph.D.
Assistant Professor of Biomedical Engineering
E-mail: hdoufesh@staff.alquds.edu

NOOR AZINA Ismail <nazina@um.edu.my> Sun, Dec 25, 2016 at 5:15 AM
To: Hazem Doufesh <hdoufesh@staff.alquds.edu>
Cc: Fatimah Ibrahim <fatimah@um.edu.my>, wanazman@ummc.edu.my

Thanks Hazem and congratulation again.

Professor Dr Noor Azina Ismail
Dean
Faculty of Economics & Administration, University of Malaya, 50603 Kuala Lumpur, Malaysia
Tel: +603 79673600/3638
Fax: +603 79567252

[Quoted text hidden]

"PENAFIAN: E-mail ini dan apa-apa fail yang dikepikan bersamanya ("Mesje") adalah ditujukan hanya untuk kegunaan penerima (-penerima) yang termaklum di atas dan mungkin mengandungi maklumat sulit. Anda dengan ini dimaklumkan bahawa mengambil apa jua tindakan bersandarkan kepada, membuat penilaian, mengulang hantar, menghebah, mengedar, mencetak, atau menyalin Mesje ini atau sebahagian daripadanya oleh sesiapa selain penerima (-penerima) yang termaklum di atas adalah dilarang. Jika anda telah menerima Mesje ini kerana kesilapan, anda mesti menghapuskan Mesje ini dengan segera dan memaklumkan kepada penghantar Mesje ini menerusi balasan e-mail. Pendapat-pendapat, rumusan-rumusan, dan sebarang maklumat lain di

https://mail.google.com/mail/u/0/?ui=2&ik=bd8db3d790&view=pt&search=inbox&th=1... 12/25/2016