High Helicobacter pylori Resistance to Metronidazole but Zero or Low Resistance to Clarithromycin, Levofloxacin, and Other Antibiotics in Malaysia

Khean-Lee Goh* and Parasakthi Navaratnam†

*Division of Gastroenterology and Hepatology, University of Malaya, Kuala Lumpur, Malaysia, †Department of Medical Microbiology, School of Medicine, Monash University Malaysia, Petaling Jaya, Malaysia

The use of multiple antibiotics in the treatment of Helicobacter pylori has given rise to the emergence of bacterial resistance to antibiotics. The pattern of bacterial resistance to antibiotics however varies from region to region. For example, high rates of clarithromycin have been reported in Europe [1,2] and in Japan and China [3–7] but lower rates in other parts of Asia [8,9], while rates of resistance to metronidazole is high in many countries in Asia but lower in Western countries [10]. We have tracked the prevalence of resistance to metronidazole and clarithromycin over several years [11–16] in our center. Consistently, resistance to clarithromycin has been zero or very low [12,14–16]. However, resistance to metronidazole has steadily increased to almost 80% [15]. With the increasing use of newer or different antibiotics for the treatment of H. pylori in Malaysia, there is concern about the background primary H. pylori resistance to these antibiotics.

The objective of this study was to determine the prevalence of resistance to six antibiotics: clarithromycin, amoxicillin, metronidazole, tetracycline, levofloxacin, rifabutin, and furazolidone which are used in the treatment of H. pylori in our local setting.

Methods

Consecutive patients with previously untreated H. pylori infection were prospectively recruited for the study from January to August 2009.

Culture of Helicobacter pylori

Four gastric biopsies of patients (two from antrum and two from the body of the stomach) were obtained from H. pylori-positive patients. The biopsies were directly plated on Columbia sheep agar plates (Bio Med...
Laboratories, Malacca, Malaysia) and placed into an anaerobic jar in the endoscopy unit. The jars were then brought to the microbiology laboratory within 2 hours of biopsy and incubated at 37 °C under microaerophilic conditions for up to 7 days. Colonies of *H. pylori* were provisionally identified by their colonial morphology, characteristic Gram-stained appearance and positive oxidase, catalase, and urease reaction.

Antibiotic Sensitivity Testing

Cultures were tested with epsilometer (E-test) (AB BioMerieux, Solna, Sweden) test for bacterial resistance to antibiotics. Pure cultures of *H. pylori* from blood agar plates were inoculated into 5 mL of sterile saline to obtain a turbidity of equivalent to McFarland’s opacity standard no.4. Using a cotton-tipped swab, sheep agar plates were inoculated to obtain a confluent growth of the organism. A single E-test strip is placed after the inoculum had dried. The plates were incubated at 37 °C under microaerophilic conditions for 72 hours after which the Minimum inhibitory concentration (MIC) was read.

Breakpoints for resistance were used according to CLSI/EUCAST guidelines – metronidazole ≥8.0 µg/mL, clarithromycin ≥1.0 µg/mL, amoxicillin ≥1.0 µg/mL, and levofloxacin ≥1.0 µg/mL. Testing for rifampicin was used for rifabutin and nitrofurantoin for furazolidine. Breakpoints used for nitrofurantoin/furazolidine used was ≥4 µg/mL. No breakpoints exist for rifampicin/rifabutin but arbitrarily based on previous reports, breakpoints of 1, 4, and 16 µg/mL were chosen [17–19]. The study was approved by the ethical committee of the University of Malaya Medical Centre and performed in accordance with GCP-ICH guidelines.

Statistical Analysis

Data was put into Statistical Package for the Social Sciences (SPSS version 11.5, Chicago, Illinois, USA) database and analysis carried out using the same program.

Results

Samples from 90 patients were obtained for culture and sensitivity testing. The mean age was 50.5 ± 14.4 years. The male-to-female ratio was 1 : 1.

The overall resistance to antibiotics is as shown in Table 1. There was a high prevalence of resistance to metronidazole 68/90 (75.5%). In 59 patients (65.5%), the MIC₉₀ was ≥256 µg/mL. Three patients had MIC of 64.0, 1, 48.0, 2, 24.0, 2, 16, and 1, 8 µg/mL. The remaining cultures (22/90–24.4%) had very good sensitivity with a MIC of 0.75 – ≤0.016 µg/mL. No male (34/45 (75.5%)) versus female (35/45 (77.7%)) difference in frequency of metronidazole resistance was noted (*p* = 1.000). The spread of MIC₉₀ is as shown in Fig. 1.

The MIC₉₀ to clarithromycin and amoxicillin were ≤0.016 µg/mL for all 90 samples giving a resistance rate of zero for both these antibiotics. The MIC₉₀ to levofloxacin for all 90 strains were below the breakpoint of 1.0 µg/mL. The values ranged from ≤0.002 to 0.75 µg/mL with a median of 0.094 µg/mL (25–75% IQR: 0.064–0.190 µg/mL).

The MIC₉₀ to rifampicin ranged from ≤0.016 to 4.0 µg/mL with a median of 0.25 µg/mL (25–95% IQR: 0.125–0.50 µg/mL). Using a high breakpoint of 16 µg/mL, no resistant strains were detected. However, using breakpoints of 1 and 4 µg/mL, 14.4 and 2.2% resistant strains were detected respectively (Table 2).

The MIC₉₀ to nitrofurantoin for all 90 strains were below the breakpoint of 4.0 µg/mL. Seventy-eight of 90 (86.6%) had a MIC₉₀ of 0.032 µg/mL. The values ranged from ≤0.032 to 0.094 µg/mL with a median of 0.032 µg/mL (25–95% IQR: 0.032–0.032 µg/mL).

Table 1 MIC₉₀ of Helicobacter pylori strains

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Median MIC₉₀ (µg/mL)</th>
<th>Range of MIC (µg/mL)</th>
<th>Resistant strains</th>
<th>N = 90 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metronidazole</td>
<td>256</td>
<td>≤0.016–256</td>
<td>68 (75.5)</td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>≤0.016</td>
<td>–</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>≤0.016</td>
<td>–</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>0.094</td>
<td>≤0.002–0.50</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.25</td>
<td>≤0.016–4.0</td>
<td>* *</td>
<td></td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>0.032</td>
<td>≤0.032–0.50</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

See Table 2.
shown in studies where the increase in prescription for respiratory tract infections [26]. This has been well documented of various other bacterial infections and especially undoubtedly the widespread use of macrolides for treatment of children [2,5,25]. The reason for this increase is worrisome with the findings of high resistance rates in

clarithromycin was accompanied by an increase in resistance to the antibiotic [27,28].

Our finding of zero or low resistance among our isolates is therefore gratifying to note. A low rate of resistance to this antibiotic has also been noted from another recent published study from Malaysia where a prevalence of 2.1% was recorded [29]. Several reports over time from our own centre have consistently recorded a very low or zero clarithromycin resistance rates [12,14,15] (Table 3). A recent study using molecular methods of detection reaffirms this finding by demonstrating a low prevalence (2.9%) of mutations in the 23S rRNA gene [16].

An “in-clinical practice” study from our centre showed a satisfactory eradication rate (per protocol analysis) of 84.4% with a PPI–clarithromycin–amoxicillin 1 week triple therapy [30]. Our findings are in keeping with a more recent study from Hong Kong, China which also showed a high eradication rate with a PPI–clarithromycin-containing triple therapy of 92.7% [31]. Hung et al. also noted a relatively low clarithromycin resistance rates among their patients.

Conversely, metronidazole resistance rates have risen steadily from 10.8% in our initial report to over 70% in latter studies (Table 3). In our present study, we have again shown a high metronidazole resistance rate. The recommended treatment for H. pylori in Malaysia utilizes amoxicillin instead of metronidazole except in cases of penicillin allergy. The high rate of metronidazole resistance has been widely reported in tropical countries where the antibiotic is often used for parasitic diseases or even empirically for any “infectious” diarrheal disease. In western countries, metronidazole is used for vaginal infections and a female predominance of metronidazole resistance has been reported. No gender difference was observed with metronidazole resistance in our study however, indicating a wider use for treatment of diarrheal diseases in our locality. Detection of resistance to metronidazole tends to vary with different methods used. However, a consistently high prevalence reported over several years reliably points to a high background primary resistance in our local population. A recent meta-analysis showed a decrease in efficacy of 18% in resistant strains [24].

Table 2 Resistance to rifampicin based on different breakpoints

<table>
<thead>
<tr>
<th>Breakpoint (μg/mL)</th>
<th>No of resistant strains (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1</td>
<td>13 (14.4)</td>
</tr>
<tr>
<td>≥4</td>
<td>2 (2.2)</td>
</tr>
<tr>
<td>≥16</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3 Antibiotic resistance over time in the University of Malaya Medical Centre, Malaysia

<table>
<thead>
<tr>
<th>Year</th>
<th>n</th>
<th>% Resistance to MTZ</th>
<th>% Resistance to clarithromycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995 [12]</td>
<td>20</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>1997 [13]</td>
<td>75</td>
<td>44.0</td>
<td>–</td>
</tr>
<tr>
<td>1997 [14]</td>
<td>63</td>
<td>54.0</td>
<td>0</td>
</tr>
<tr>
<td>2000 [15]</td>
<td>74</td>
<td>77.0</td>
<td>0</td>
</tr>
<tr>
<td>2006 [16]</td>
<td>107</td>
<td>–</td>
<td>2.9</td>
</tr>
<tr>
<td>2009 (present study)</td>
<td>90</td>
<td>75.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Discussion

Resistance to antibiotics is a major problem in the effective treatment of H. pylori. Resistance to clarithromycin in particular has been shown to impact adversely on eradication success. For example, Ducon et al. [20] showed a 20% eradication success in clarithromycin-resistant strains compared with 83% in sensitive strains and in a Korean study, treatment success was absolute in all sensitive strains but zero in patients harboring resistant strains [21]. In a review of the published data, Megraud and Doermann recorded a drop of 70% in eradication rates in resistant versus sensitive strains [22] in a pooled analysis of several studies. In a systematic analysis of published studies, Houben et al. [23] computed a decline in success rate of 56% with 1 or 2 week clarithromycin containing triple therapy. A more recent meta-analysis by Fischbach et al. [24] recorded a decrease in eradication rate of 66% with Proton-pump inhibitor PPI–clarithromycin–amoxicillin triple therapy. Clarithromycin is a key antibiotic, and the emergence of resistance will negate against its usefulness in H. pylori eradication therapy.

High resistance rates to clarithromycin of up to 40% have been reported in several studies. This is especially worrisome with the findings of high resistance rates in children [2,5,25]. The reason for this increase is undoubtedly the widespread use of macrolides for treatment of various other bacterial infections and especially for respiratory tract infections [26]. This has been well shown in studies where the increase in prescription of
setting. Isolated reports of amoxicillin resistance have been reported from various locations [33], but universally this has been distinctly rare [26]. Levofloxacin is a newly introduced antibiotic in Malaysia. Again it was reassuring to note that resistance was zero to this antibiotic. In countries where prescription of this antibiotic is widespread, an exponential increase in resistance has been observed. For example, in Taiwan levofloxacin resistance has increased 2.8% in 2003 to 11.8% in 2007 [34], in France from 3.3% 1999 to 17.2% in 2005 [35], and in Korea from 0% in 1999 to 21.5% in 2006 [36,37]. In Malaysia, although increasingly used for urinary, biliary tract and respiratory infections, levofloxacin has been reserved for use as a second-line therapy for H. pylori [38].

Furazolidone and rifabutin have both been used for second-line rescue therapies. They have generally not been popular locally. With increasing emergence of resistance to the more commonly used antibiotics, these drugs may however have to be considered for second-line rescue therapy.

The resistance pattern for rifampicin/rifabutin is important to note. Using a high breakpoint of 16 µg/mL, no resistant strains were detected. However, using lower and more realistic breakpoints of 1 and 4 µg/mL, 14.4 and 2.2% of the strains respectively were detected to be resistant. This is not unexpected as tuberculosis is still common in Malaysia [39] and rifampicin is frequently used in anti-tuberculosis treatment regimens.

There has been a resurgence in the use of bismuth-containing compounds such as colloidal bismuth subcitrate to overcome the declining eradication rates in several countries. International authorities have now recommended bismuth-containing quadruple and sequential therapies as first-line treatment for H. pylori [40]. Bismuth compounds are not readily available in Malaysia in recent years, but the use of these drugs should certainly be considered as well. Continued monitoring of resistance to antibiotics remains important to determine whether the favorable antibiotic profile that we have in our local setting remains the same in the future.

Conflict of Interest

No external source of funding was obtained for this study. The authors have no conflict of interest in carrying out this study.

References

30 Qua CS, Manikam J, Goh KL. Efficacy of 1-week proton pump inhibitor triple therapy as first-line *Helicobacter pylori* eradication regime in Asian patients: is it still effective 10 years on? *J Dig Dis* 2010;11:244–8.

38 Goh KL, Manikam J, Qua CS. Highly successful sequential therapy as rescue treatment for Helicobacter treatment failures. *J Gastroenterol Hepatol* 2010;25:A170.
