Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser

Harith Ahmad, Amirah Abdul Latif, Muhammad Imran Mustafa Abdul Khudus, Ahmad Zarif Zulkifli, Mohd. Zamani Zulkifli, Kavintheran Thambiratnam, and Sulaiman Wadi Harun

Abstract

A highly stable tunable dual-wavelength fiber laser (TDWFL) using graphene as a means to generate a highly stable output is proposed and generated. The TDWFL comprises a 1 m long, highly doped erbium-doped fiber (EDF) acting as the linear gain medium, with a 24-channel arrayed waveguide grating acting as a wavelength slicer as well as a tuning mechanism to generate different wavelength pairs. The tuned wavelength pairs can range from 0.8 to 18.2 nm. A few layers of graphene are incorporated into the laser cavity to induce the four-wave-mixing effect, which stabilizes the dual-wavelength output by suppressing the mode competition that arises as a result of homogenous broadening in the EDF.

© 2013 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(160.4670) Materials : Optical materials
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 19, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 14, 2012
Published: February 1, 2013